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Abstract. An analytical study of the temperature effects on the vibron soliton of the Takeno 
model for energy hanspo* in protein is presented. using Davydov's thermally averaged 
Hamiltonian method. The conditions of the existence of vibron solitons in the model system are 
found and ideal protein parameters are used to show whether these condirions can be satisfied. 

1. Introduction 

In recent years interest has been aroused by attempts to apply solid state theory to describe 
biological processes at the molecular level [ 1,2]. The problem of the storage and transport 
of energy in the alpha-helical structure of the protein molecule has been studied by many 
authors [3-51. Davydov and his coworkers have shown that the energy of Amide-I(C = 0) 
vibration in alpha-helical proteins could be transported in the form of solitons and that this 
might be responsible for the mechanism of muscle contraction [6]. In the Davydov theory, 
the solitons are formed through the coupling of molecular vibration exciton nonlinearly with 
longitudinal phonons. Takeno modified Davydov's theory and proposed a coupled oscillator 
lattice model in which a relevant mode of molecular vibrations of a given molecule in a one- 
dimensional molecular crystal is taken to be coupled linearly with the others and nonlinearIy 
coupled with lattice vibrations. The soliton formed in such an oscillator system was called 
a vibron soliton [4]. Takeno considered that a vibron soliton would be more appropriate 
to describe vibrational energy transfer in or-helical proteins. Recently many related studies 
of temperature effects on Davydov solitons [&9] have been made by Davydov and others. 
However, the study of temperature effects on vihron solitons is still lacking. In this paper, we 
will investigate the temperature effects on the vibron solitons by using Davydov's thermally 
averaged Hamiltonian method [6,9]. 

This paper is organized as follows: in section 2 the model Hamiltonian of the system 
is presented and the corresponding temperaturedependent equations of motion &e derived. 
In section 3, two types of soliton solutions are presented. Finally section 4 is discussion 
and conclusion. 

2. Hamiltonian and basic equations of motion 

The total Hamiltonian of the onedimensional Takeno model is composed of three parts: 

t To whom dl correspondence should be addressed. 
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H = HL + HA + Hi 

where HL is the phonon operator. li,, M ,  K and KI are the displacement operator of 
the nth molecule from its equilibrium position, the molecule mass. the longitudinal elastic 
constant of the harmonic lattice and the anharmonicity parameter, respectively. HA is the 
operator for the inbamolecular Amide-I vibration. G,,, m and WO are normal coordinate 
operator, effective mass and frequency, respectively, of the relevant intramolecular Amide-I 
vibration of the nth molecule, and L is a force constant giving vibrational exciton transfer 
between the nearest-neighbour peptide molecules. HI describes the couplings between the 
intramolecular Amide-I vibration and the lattice vibration of peptide groups. Ro is the lattice 
constant and x is the coupling constant. 

In the second quantization representation, the system Hamiltonian (2.1) can be rewritten 
as 

fi =zho(q)(i,f&, + $)+xF(qi,qz)(i*, +i?q,)(&, +if , ) (&i-pl  +i;+,J 
* * M I  

where 

in, 2; and iq, 6: are boson operators and 
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is the eigenfrequency of acoustic phonons characterized by wave number q. 

for the eigenstate +(t) of the system Hamiltonian 
In this paper, we employ the product of vibron and phonon-coherent states as an ansatz 

-an4z$)]~~)AeXP [ c ( B ; ~ ~ ~  " - B~,~:)]IV)L 

where IO), and IO)= are the vibron and phonon vacuum states, respectively. 

equations derived from the thermally averaged Hamiltonian (H) in the state (2.3) 
Following Davydov [6], the evolutions of any and pny are determined from dynamical 

(H) = CP""(t(t)lfil+(t)) = Ch@4(lBnyI2 + ty )  " 4 

- F ( 4 ,  k)(BY," + B*,..)(BK.. + Brx,n)(B-y-k.n + Bq=t,") 
qk 

with kB being Boltzmann's constant and T the absolute temperature. 

equations 
From (H), we derive the dynamical equations for any and pny by using the Hamilton 

(2.7) 
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where the dots denote the derivative with respect to time 
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If we introduce new functions 

aq., = a ( x ,  t)  

and use the long wavelength approximation 

sin(R0q) N Roq exp(fR0q) = 1 zk Roq 

the dynamical equations can be reduced to 

(2.9) 
where U: = RzK/M and p ( x ,  t )  = -ux.  Equations (28 )  and (2.9) are the basic equations 
we want to study in this paper. 

To study solitary wave solutions with constant velocity V, we introduce the following 
dimensionless variable 

(2.10) 

and assume that +(z, t )  = 4(6), p ( x ,  t) = ~ ( 5 ) .  Then (2.8) and (2.9) are transformed into 

i(h-uf) x - Vt 
g=- Ro 

a ( x ,  t) = 4(x, !)e 

where 

sqi2d.$ = C (C is an arbitrary constant) 

hLk2 + h(0o  - 0) A=- fiL e-w" + -e-w" 
Zmwo 4moa 

(2.1 1) 

(2.12) 

&=-  Xfi k = -  2m00vew" y = K 1 / ( 3 K ) .  
KwoRo L 
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3. Soliton excitations of the model system 

The solitary wave solutions of equations (1 1) and (12) have been studied by Davydov and 
Zolotariuk [IO, 121. They have shown that two types of approximate solitary wave solutions 
can be found by using iterative method. 

(1) Solitary waves of the j rs t  fype. Following Davydov's derivation, the nth order 
approximation of the solitary wave solutions of the first type of (11) and (12) is 

where 

(3.3) 

(3.4) 

is a Debye-Waller-factor-like parameter, pn (or A) is the amplitude which is a positive root 
of the cubic equation 

(3.5) 

it is clear that when g = 1 (or y = f/4L) the solutions (3.1) and (3.2) become the exact 
soliton solution. Near g = 1 equations (3.1) and (3.2) represent the nth-order approximate 
soliton solution. 

At a fixed value of s, equation (3.5) has only one positive root, which is an increasing 
function of velocity ratios for both subsonic velocity with s > 1, including the case s = 1. 
and supersonic velocity with s > 1. The only restriction on soliton velocities comes kom 
the long-wavelength approximation which requires p,, << Ro. Thus, we have shown that (at 
least sufficiently close tog  = 1) the set of equations (2.1 1) and (2.12) admits the bell-shaped 
soliton solutions with both subsonic and supersonic velocities. 

Furthermore, the energy and the momentum carried by a solitary excitation of this kind 

CZ 
12 - ~ 3  + ( I  - s*)g-z - 2ysg3n-4 = o 

are 

(3.7) 

where p' is the effective mass of soliton. 
There are two limit cases of the solitary wave solution of the first type. (i) Subsonic case. 

If the dispersion term and the anharmonicity term in (2.12) are absent and the parameter y 
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approaches zero in such a way that the relation pl = A g j / 2 L ( g  = 1) remains valid and 
(3.5) has a positive solution only for subsonic travelling velocity: 
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The first-order approximation energy and momentum of the subsonic soliton are 

(ii) Supersonic case. In the subsonic solitary excitation, coupling between the 
intramolecular amide-I vibration and the intermolecular lattice vibration is essential. This 
is a high-order mechanism for soliton formation. There also exists a mechanism of soliton 
formation through the anharmonicity of the hydrogen-bond. This occurs when (3.5) holds as 
the ratio ?/i approaches zero. In this case, only the supersonic acoustic soliton is excited 
with 

1 - - [3(s - 1 ) 1 ~ ~ ~ / ( 2 C )  s > 1. 

The first-order approximation energy and momentum of the supersonic soliton are 

E ( V )  = $p 'v2  + 2m& 

P ( V )  = p * v .  

(2) Soliton excitations ofthe second type. In a similar way to the first type of solution, 
the nth-order approximation solution of the second type is found to be 

&)(C) = 4(3fi,)L/2Cz/3 sech2(~C'1'finC) (3.8) 

~("'(5) = $Bh"(3fi,,)'k2/' sech2($'13fi&) (3.9) 

where the amplitude B i s  a positive root of the equation 

Lc2/3 (y )"' (yZ2 - E )  + (1 - s2)Z = 0 
3 

and 

(3.10) 

(3.11) 

(3.12) 
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where h is a Debye-Waller-factor-like parameter, but now (3.8) and (3.9) are well defined 
only for s > 1, i.e. the solitary wave of the second type can only travel at supersonic 
velocity. When h = 1,  the solution (3.8) and (3.9) becomes the exact one. It follows from 
(3.12) and constraint h = 1 that B must be given by 

(3.13) 

The first-order approximation energy and momentum of the soliton of the second type 
are 

P(V)= [Q’tlc(&;p:]v 

(3.14) 

(3.15) 

where 

The main differences between the solitary waves of the first and second type are: (i) 
the velocity of the former goes from zero to infinite while the latter must be larger than 
that of sound; (ii) p Q 4’ for the former while p cx 4 for the latter; and (iii) the energy of 
the former is lower than that of the latter for the same wave velocities. Therefore, we only 
discuss the solitary wave of the first type in the following. 

4. Discussion and conclusions 

The differences between the Davydov model and the Takeno model have already been 
discussed by Takeno [4]. The aim of the present paper is to show whether the Takeno 
model can support solitary waves at physiological temperature. It is clear from the results 
above that the condition of the existence of solitary waves is that the Debye-Waller-factor- 
l i e  parameter g (or h )  must be near 1 for the first (or second) type solutions and at the 
same time that the amplitude of the solitary wave must be smaller than the lattice constant 
(Ro). From the expressions (3.4) and (3.12), it can be seen that g and h are determined by 
the protein parameters and temperature. The widely used protein parameters are [5] 

K = 13 (N m-’) XD = 35-62 @N) 

K I  = 17 (N m-’) 

Mp = 1.67 x IO-” (kg) 

ug = (K/M)’ l ’Ro = 3.8 x IO’ (m s-I) 

LD = 1.55 x IO-” (J) 

m = 30Mp M = 1 l4Mp Ro = 4.5 (A) 
Ke = 1.38 x (J K-’) 

R = 1.055 x IO-” (.I s) 
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where X D  and Lo in the Davydov model are related to x and L in the Takeno model by 

respectively. 

parameters. When g = 1 and C = 1 and if ksT >> fim, we can approximate W,(T) by 
In the following we discuss whether (3.4) is satisfied when g = 1 for the protein 

as done in [ 1 I] where p = pLn is the amplitude of the solitary wave of the first type. Since 
g = 1, we have from (3.4) 

4 y E / j  = 1. 

Using the protein parameters and the expression for W,(T) above, we find 

p = 0.35Ro/(l + S2)”* 

at T = 300 K. This shows that p << Ro for all values of wave velocity and so the long- 
wavelength approximation is also satisfied. Of course, p approaches zero for larger s. It 
is clear that the wave velocity can be smaller, equal to and larger than that of sound. This 
is because we have included the cubic anharmonicity of the hydrogen-bonded interaction. 
However, since p must also satisfy (3.5), the velocity of the solitary is very limited. Solving 
(3.5) for the protein parameters, we find that s must be near 1, i.e. the solitary wave of the 
first type can exist only when the wave velocity is around that of sound. 

In conclusion. Davydov’s thermally averaged method has been used to study the 
temperature effect on the vibron soliton in the Takeno model. The result shows that the 
Takeno model can support solitary waves at physiological temperature only for a narrow 
range of values of wave velocity. This is different from the result obtained by Davydov 
[61. They have shown that the solitary wave can be realized in the Davydov model for 
any values of wave velocity smaller than that of sound. Of course, the Takeno model 
is different from the Davydov model in that the quantum numbers of the former are not 
conservative. Furthermore, we have considered the anharmonicity of the hydrogen-bonded 
interaction between amino-acid molecules. This leads to the result that the velocity of the 
solitary wave can be larger than that of sound and this is also the reason that the amplitudes 
of the solitary waves must satisfy certain conditions (equation (3.5) and (3.10)). Our results 
hold only for the long-wavelength approximation and only under this approximation can 
the dynamical equations be solved analytically. Since the discreteness of the system is 
important for energy transport in protein molecules, we will study this in the future. 
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